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METHOD OF QUASI-GREEN'S FUNCTIONS FOR A NONSTATIONARY NONLINEAR 

PROBLEM OF THERMAL RADIATION 
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and E. A. Gusak 

UDC 517.947.43 

We derive a system of two nonlinear integral equations for the determination of a 
temperature field and the intensity of the incident radiation. The kernels of 
these equations are expressed in terms of a quasi-Green's function. 

One of the methods for increasing the accuracy of thermal calculations consists in con- 
verting a boundary value problem of heat conduction to an equivalent integral equation [I]. 
Various methods can be used for this purpose (see, for example, [2, 4]). In what follows, 
this conversion is effected with the aid of the method of quasi-Green's functions [5]. The 
main advantages of this method are: the explicit form of the kernels of the integrand ex- 
pressions; the incorporation of information relating to the geometry of the domain of inte- 
gration directly into the kernels using the apparatus of the theory of R-functions [6]. 
With an appropriate choice of structure for the normalized equation of the domain of inte- 
gration [6], we obtain Fredholm integral equations of the second kind. 

We consider a nonlinear initial-boundary problem for a heat radiating body in which the 
thermophysical characteristics and heat sources are temperature-independent and in which heat 
exchange with an external medium is present on a convex surface S (see [7]): 

div(s t = - - W ,  P6D,  t > O ,  (1) 

u(P, 0)=~(P), PED, (2) 

Ou 
t + a u = ~ ( P ,  t, u), P6S,  t > O .  (3) 

On 

Here I = ~(~, t) is the thermal conductivity coefficient; c is the specific heat coefficient; 
p is the density of the medium; W is the volumetric heat source or heat sink density, 

(P, t, u) = - - % ( P ,  t) Jr q,(P, t, u), 

4 
where ~o(P, t) = qsource(P, t) + aum(P, t) + r (P, t) is the total heat flow supplied to 
S; ~(P, t, u) = eau ~ is the flow radiated in accordance with the Stefan--Boltzmann law. Here 
Um, in turn, is the temperature of the external medium; a is the Stefan--Boltzmann constant; 
e = e(u) is the degree of blackness of surface S. 

If surface S contains a concave portion S~ or if there is an exchange of radiative flows 
with other surfaces, then in the boundary conditions (3) an additional term e x E appears 
in the function ~,(P, t, u) which accounts for radiation of heat on the concave surface S,, 
and we then use the integral equations of radiant heat exchange 
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E (P, l) = Esource ( D, t) q- f K (P, Q) {rE(Q, t) + eF [u (Q, t)]} dSq, P E S~. (4) 

Here E(P, t) is the integral hemispherical intensity of the incident radiation; Esource(P, 
t) is the external heat source intensity; r = l-c is the coefficient of reflection; K(P, Q) 
is a continuous, positive-definite, symmetric kernel: 

cos (P - -  Q, np) cos (Q - -  P, no) 
K (P ,  Q) = ~ ( p  _ O)~ , 

P -- Q is the vector joining points P and Q; np and nQ are exterior normals to S~ at points 
P and Q. Using Green's second formula for the operator Lu = div(Xgradu)-c0u t [7], we have 

,+o  +o[(ou ) 
O D D ' 

(~ o~ ~) 
-~-n- t- ] dSdt, 

where Mv = div(X grad v) + cpvt. 

Substituting for v in Eq. (5) the fundamental solution of the thermal conductivity 
equation, namely, 

v = r* ( P ,  Q, t - ~) = 
cpr~Q ] 

l exp , 
(2 -Va/cp (t -- ~))3 4 (t--z) 

and making use of the following properties of the function r*(P, Q, t - T) and the Dirac 
delta function, 

(5) 

Mr* = - - 5 ( P - - Q ) 5 ( t - - T ) ,  P, QED, t, ~ > 0 ,  

t 

.I I f (Q; x) 6 (P - -  Q) 5 ( t - -  ~) dDd~ = f (P, t), 
0 D 

(6)  

(7)  

we obtain 

0 o 'b , - On 
dSdt. (8) 

Adding Eqs. (8) and (5), we have 

u (P, z) = -- 
~+o 

J" .f [Lu(r* - -  v) + uMv] dDdt -Jr 
0 D 

,+o [( ou ) ( )] 
o s On + cz (r* - -  v) dSdt - -  co o'f u (r* -- v) ~+~ 

(9) 

We construct the function v(P, Q) in the following form [5]: 

v =  v(P, Q, t - - ' O =  

I~(~ ) (x! + (~,- x~) ~ + ~ (21/~/cp(t_,))3 = ~ (P' Q) t2(t -- ,) 

w h e r e  r = ~ ( •  P = P ( x .  x~, x3); Q = Q(h, $,., ~); ~(P,  Q ) =  o(P)a*o(Q);  A," i s  a symbol 

o f  R - c o n j u n c t i o n ,  f o r  e x a m p l e ,  A* = A o [ 6 ] ;  m(x)  i s  t h e  n o r m a l i z e d  e q u a t i o n  o f  t h e  b o u n d a r y  
o f  t h e  doma in  o f  i n t e g r a t i o n  [ 5 ] .  

exp !_ cp[r~(@_~4~)x)o(~)] ) , (i0) 
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It is readily seen that with this choice for the function v, the corresponding function 

G(P, Q, t--~)=r*(P, Q, t--'O--v(P, Q, t--'c) (ii) 

satisfies the boundary condition 

O6 
+=G = 0 (12) 

On 

Taking relations (i), (2), (3), and (12) into account, we see that Eq. (9) assumes the form 

~+0 
u.(P, ~)= U (P, "0-- S .I u(Q)MvdDdt-cp .f u(Q' .Oo(P, Q, O)dD, 

0 D D 

(13) 

where 

~+o 

U(P, "0= S .f WO(P' Q' t--"OdDdt + 
0 D 

z+o 
f ~ c (P, Q, t -  ~) ,~ (P, t, u) dSdt + ~p i * (Q) a (p, Q, --  ~) ~z). 
o~ J b 

Thus we have obtained a solving system of integral equations (13), also subject to the 
requirement (4), for the determination of the temperature field u(P, t). 

The function m(x) is constructed in a form which guarantees continuity of the kernel 
Mv of integral equation (13). Integral equations analogous to Eq. (13) can also be con- 
structed for other boundary conditions. 

NOTATION 

u(P, t), temperature field of thermally radiating body; D, a finite region of three- 
dimensional space with convex boundary S; t, time; n, inner normal to boundary S; r = 

~(x~--~) =, length of vector joining points P(xl, x2, x3) and Q(EI, E2, ~3), $I, concave 
i=I 

portion of surface S. 
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